
Viscous relativistic hydrodynamics∗

Ulrich Heinz
Department of Physics
The Ohio State University

191 West Woodruff Avenue
Columbus, OH 43210

Presented at

2006 RHIC & AGS Annual Users Meeting

Workshop 8: “How perfect is this matter? - The success and new
challenges of hydrodynamics at RHIC” (BNL, 7 June 2006)

Based on work done in collaboration with Asis Chaudhuri & Huichao Song
Key references:
W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) 118, 349 (1979)
A. Muronga, Phys. Rev. C 69, 034903 (2004)
A. Muronga and D. Rischke, nucl-th/0407114
A. Chaudhuri and U. Heinz, nucl-th/0504022
U. Heinz, H. Song, A. Chaudhuri, Phys. Rev. C 73, 034904 (2006)

∗Work supported by the U.S. Department of Energy (DOE)



Starting point: The conservation laws

∂µN
µ = 0 charge conservation

∂µT
µν = 0 energy-momentum conservation

∂µS
µ

≥ 0 2nd law of thermodynamics
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Ideal fluid decomposition

Ideal fluid dynamics ⇐⇒ local thermal equilibrium f(x, p) = feq(x, p)
⇐⇒ collision time scale � macroscopic time scales

Nµ =

∫

d3p

E
pµf(x, p) = n uµ n = (net) charge density

Tµν =

∫

d3p

E
pµpνf(x, p) e = energy density

= (e + p) uµuν
− p gµν p = pressure

= e uµuν
− p∆µν ∆µν = gµν

− uµuν

Sµ = s uµ s = entropy density

First law of thermodynamics: Ts = p − µn + e

∂µNµ = ∂µTµν = 0 =⇒ ∂µSµ = 0

(in absence of shock discontinuities, entropy is conserved)
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Ideal fluid equations (in comoving frame)

Convective and transverse derivative: ∂µ = uµD + ∇µ

D ≡ uν∂ν, ∇µ ≡ ∆µν∂ν

ṅ = −n θ

ė = −(e + p) θ

u̇µ =
∇µp

e + p

p = p(n, e)

ḟ = uµ∂µf ≡ Df = time derivative in

local rest frame

θ ≡ ∂ · u = local expansion rate

equation of state (EOS)

6 equations for 6 unknowns: n, e, p, uµ
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Non-ideal fluid decomposition

f(x, p) = feq(x, p) + δf(x, p)

Nµ = n uµ + V µ

= Nµ
eq + δNµ

Tµν = e uµuν
− p∆µν

−Π∆µν + πµν

+ Wµuν+W νuµ

= Tµν
eq + δTµν

Sµ = s uµ + Φµ

= Sµ
eq + δSµ

n = uµNµ

V µ = ∆µνNν = charge flow in l.r.f.

e = uµTµνuν

Π = −1
3∆µνT

µν
− p = viscous bulk pressure

Wµ= uνTνλ∆λµ = energy flow in l.r.f.

= qµ + e+p
n V µ qµ = heat flow in l.r.f.

πµν= T 〈µν〉

≡
[

1
2(∆

µσ∆ντ+∆µτ∆νσ) − 1
3∆

µν∆τσ
]

Tτσ

= viscous shear pressure tensor (πµ
µ=0)

s= uµSµ

Φµ= ∆µνSν = entropy flow in l.r.f.
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Frame choice and matching conditions

The local equilibrium distribution feq(x, p) (with local temperature T (x)
and chemical potential µ(x)) that best matches the non-equilibrium f(x, p)
is defined by the matching conditions

uµ δTµν uν = uµ δNµ = 0

Local rest frame is ambiguous:

Eckart frame: V µ = 0, qµ = Wµ

Landau frame: W µ = 0, qµ = −
e+p
n V µ

(Intermediate frames also possible.)

=⇒ Need 1+3+5 = 9 additional equations for Π, qµ, πµν from underlying
transport theory.
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Non-ideal fluid equations

ṅ = −n θ −∇ · V + V · u̇

ė = −(e + p + Π) θ + πµν∇
〈µuν〉

−∇ · W + 2 W · u̇

(e+p+Π) u̇µ = ∇
µ(p + Π) − ∆µν

∇
σπνσ + πµνu̇ν

−[∆µνẆν + Wµθ + (W · ∇)uµ]

Depending on frame, can set either V µ =0 or W µ = 0. In Landau frame
(Wµ = 0) and for baryon-free systems (n =0, no heat conduction) equations
simplify to:

ė = −(e + p + Π) θ + πµν∇
〈µuν〉

(e+p+Π) u̇µ = ∇
µ(p + Π) − ∆µν

∇
σπνσ + πµνu̇ν

Need extra equations for bulk and shear viscous pressures Π, πµν.

Follow Chapman-Enskog strategy: write f(x, p) = feq

(

p·u(x); T (x), µ(x)
)

+
δf(x, p) and assume that δf � f (and thus δNµ and δT µν) can be expanded
in gradients of equilibrium parameters T, µ, uµ.
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The second law of thermodynamics (I)

In equilibrium the identity Ts = p − µn + e can be rewritten as

Sµ
eq = p(α, β)βµ

− αNµ
eq + βνT

µν
eq

where α ≡ µ/T , β ≡ 1/T , and βµ ≡ uµ/T .

The most general off-equilibrium generalization is (Israel & Stewart 1979)

Sµ = p(α, β)βµ
− αNµ + βνT

µν + Qµ(δNµ, δTµν)

where Qµ is second and higher order in the off-equilibrium deviations δNµ

and δT µν.

The Gibbs-Duhem relation dp = s dT + n dµ can be recast as

∂µ(p(α, β)βµ) = Nµ
eq∂µα − Tµν

eq ∂µβν

Using also the conservation laws, the entropy production rate takes the form

∂µSµ = −δNµ∂µα + δTµν∂µβν + ∂µQµ
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The second law of thermodynamics (II)

In the Chapman-Enskog spirit, one now postulates linear relations between the off-

equilibrium flows δNµ, δT µν and the thermodynamic forces ∂µα, ∂(µβν), consistent

with the second law

∂µSµ = −δNµ∂µα + δTµν∂µβν + ∂µQµ
≥ 0

These relations depend on the choice of Qµ. Standard dissipative relativistic fluid dynamics

assumes Qµ = 0. In this case

T∂µSµ = ΠX − qµXµ + πµνX〈µν〉 ≡
Π2

ζ
−

qµqµ

2λT
+

παβπαβ

2η
≥ 0,

with thermodynamic forces X ≡ −∇ · u = −θ, Xµ ≡ ∇µT
T − u̇µ = − nT

e+p∇
µ

�

µ
T �

and

X〈µν〉 ≡ ∇〈µuν〉, can be satisfied by setting

Π = −ζθ, qµ = −λnT 2

e+p∇
µ

(

µ
T

)

, πµν = 2η∇〈µuν〉

with positive transport coefficents ζ ≥ 0, λ ≥ 0, and η ≥ 0.

Unfortunately, plugging these equations for Π, qµ, and πµν directly into the non-ideal

hydro equations leads to acausal signal propagation.
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The second law of thermodynamics (III)

Causal relativistic fluid dynamics requires keeping Qµ in the entropy flux, at least up to

terms of second order in the irreversible flows.

S
µ

= su
µ

+
qµ

T
+ Q

µ

Setting qν = 0 (n = 0) for simplicity, we get up to second order

S
µ

= su
µ
− (β0Π

2
+ β2πνλπ

νλ
)
uµ

2T

This yields (after some algebra)

T∂µSµ = Π

�

−θ − β0Π̇ − Π T∂µ

�

β0u
µ

2T � �

+ π
αβ

�

∇〈αuβ〉 − β2π̇αβ − παβ T∂µ

�

β2u
µ

2T � �

!
=

Π2

ζ
+

παβπαβ

2η
≥ 0

The thermodynamic forces −θ, ∇〈αuβ〉 are seen to be self-consistently modified by the

irreversible flows Π, παβ. This leads to dynamical (“transport”) equations for Π, παβ.
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Transport equations for the irreversible flows

The resulting transport equations for Π, παβ are

Π̇ = −
1

τΠ

[

Π + ζθ + ΠζT∂µ

(

τΠuµ

2ζT

)]

≈ −
1

τΠ
[Π + ζθ]

∆αµ∆βνπ̇µν = −
1

τπ

[

παβ − 2ζ∇〈αuβ〉 + παβηT∂µ

(

τπuµ

2ηT

)]

=⇒ π̇αβ ≈ −
1

τπ

[

παβ − 2ζ∇〈αuβ〉

]

− (uαπβν+uβπαν)u̇ν

where we introduced the relaxation times τΠ = ζβ0, τπ = 2ηβ2. In principle,
both ζ, η and τΠ, τπ should be calculated from the underlying kinetic theory.

The purple terms are of second order in the derivatives of the thermodynamic
equilibrium quantities and, in the regime of validity of the approach, should
be neglected relative to the other terms.

[Keeping them would require also keeping third-order terms in the entropy flow Qµ for

consistency, and would modify both the effective local relaxation times τΠ,π and the

viscosities η, ζ by amounts which depend on the local hydrodynamic expansion rate.]
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Viscous relativistic hydrodynamics (Israel & Stewart 1979)

Include shear viscosity η, neglect bulk viscosity (massless partons) and heat
conduction (µB ≈ 0); solve

∂µ Tµν = 0

with modified energy momentum tensor

Tµν(x) =
(

e(x)+p(x)
)

uµ(x)uν(x) − gµνp(x)+ πµν.

πµν = traceless viscous pressure tensor which relaxes locally to 2η times
the shear tensor ∇〈µuν〉 on a microscopic kinetic time scale τπ:

Dπµν = − 1
τπ

(

πµν − 2η∇〈µuν〉
)

−
(

uµπνλ+uνπµλ
)

Duλ

where D ≡ uµ∂µ is the time derivative in the local rest frame.

Kinetic theory relates η and τπ, but for a strongly coupled QGP neither η nor
this relation are known =⇒ treat η and τπ as independent phenomenological

parameters. For consistency: τπθ � 1 (θ = ∂µuµ = local expansion rate).
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(1+1)-d viscous hydrodynamic equations
(Muronga & Rischke 2004, Chaudhuri & Heinz 2005)

[For (2+1)-d viscous hydrodynamic equations see Heinz, Song & Chaudhuri, nucl-th/0510014]

Azimuthally symmetric transverse dynamics with long. boost invariance:
Use (τ, r, φ, η) coordinates and solve

• hydrodynamic equations for T ττ = (e+P)γ2
r−P, T τr = (e+P)γ2

rvr

(with “effective pressure” P = p−r2πφφ−τ 2πηη) together with

• kinetic relaxation equations for πφφ, πηη:

1

τ
∂τ

�

τT
ττ

�

+
1

r
∂r

�

r(T
ττ

+ P)vr

�

= −
p + τ 2πηη

τ
,

1

τ
∂τ

�

τT τr

�

+
1

r
∂r

�

r(T τrvr + P)

�

= +
p + r2πφφ

r
,

�

∂τ + vr∂r

�

πηη = −
1

γrτπ �
πηη −

2η

τ 2

�

θ

3
−

γr

τ � �

,

�

∂τ + vr∂r

�

π
φφ

= −
1

γrτπ �

π
φφ

−
2η

r2

�

θ

3
−

γrvr

r � �

.

Close equations with EOS p(e) where e = T ττ−vrT
τr and vr = T τr/(T ττ+P).
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(1+1)-d viscous hydrodynamics: first results (I)
(Chaudhuri & Heinz, nucl-th/0504022)

Viscosity effects on freeze-out surface (τπ = 3η
2p, πrr

ini = 2η
3τi

):

0 2 4 6 8 10

2

4

6

8

t 
(f

m
)

r (fm)

0.160.20

 

 

No phase transition
T

i
=.3 GeV, τ

i
=.5 fm

                     η/s=0

                     η/s=.08

                     η/s=.135

 

 

0.16

0.33

0 2 4 6 8 10 12

2

4

6

8

10

t 
(f

m
)

r (fm)

0.160.33

 

 

0.16

0.33

No phase transition
T

i
=.5 GeV, τ

i
=.1 fm

                     η/s=0

                     η/s=.08

                     η/s=.135

 

 

• Both sets of initial conditions have similar initial total entropy.

• Viscosity slows down cooling and gives more time for transverse expansion.

• Viscous effects are larger for smaller τi, due to faster initial expansion rate.
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(1+1)-d viscous hydrodynamics: first results (II)
(Chaudhuri & Heinz, nucl-th/0504022)

Sensitivity to initial πrr, η
s , and relaxation time τπ (Tf = 160 MeV):

τπ =
3η
2p,

η
s = 0.135
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• Larger initial viscous pressures create larger overall viscous effects
(“memory effect”)

• Significant viscous effects for η
s > h̄

4π

• At fixed η
s , viscous effects increase with increasing relaxation time τπ
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(1+1)-d viscous hydrodynamics: first results (III)
(Chaudhuri & Heinz, nucl-th/0504022)
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Viscous shear pressu-
re reduces longitudi-
nal work, but increa-
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=⇒ same initial con-
ditions yield flatter
transverse momentum
spectra than for ideal
fluid dynamics
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Summary

• Causal relativistic dissipative hydrodynamics requires solution of a cou-
pled set of (i) hydrodynamic equations with additional irreversible flow
corrections and (ii) kinetic relaxation equations for these irreversible
flows.

• Relaxation equations for dissipative flows are derived from a second-order
approach to implementing the 2nd law of thermodynamics, keeping terms
up to second order in derivatives of equilibrium quantities.

• For each non-vanishing space-time component of the hydro equations, we
must solve one transport equation for each non-vanishing transport coef-
ficient (bulk viscosity, shear viscosity, heat conduction) =⇒ significantly
increased numerical complexity.

• (1+1)-dimensional viscous hydro is under investigation;
(2+1)-dimensional code is under construction.
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